Implementing Blocked Sparse Matrix-Vector Multiplication on NVIDIA GPUs
نویسندگان
چکیده
We discuss implementing blocked sparse matrix-vector multiplication for NVIDIA GPUs. We outline an algorithm and various optimizations, and identify potential future improvements and challenging tasks. In comparison with previously published implementation, our implementation is faster on matrices having many high fill-ratio blocks but slower on matrices with low number of non-zero elements per row.
منابع مشابه
A Survey on Performance Modelling and Optimization Techniques for SpMV on GPUs
Sparse Matrix is a matrix consisting of very few non-zero entries. Large sparse matrices are often used in engineering and scientific operations. Especially sparse-matrix vector multiplication is an important operation for solving linear system and partial differential equations. However, there is a possibility that even though the matrix is partitioned and stored appropriately, the performance...
متن کاملTechnical Report WM - CS - 2010 - 03 College of William & Mary Department of Computer Science WM - CS - 2010 - 03 Implementing the Dslash Operator in OpenCL
The Dslash operator is used in Lattice Quantum Chromodymamics (LQCD) applications to implement a Wilson-Dirac sparse matrix-vector product. Typically the Dslash operation has been implemented as a parallel program. Today’s Graphics Processing Units (GPU) are designed to do highly parallel numerical calculations for 3D graphics rendering. This design works well with scientific applications such ...
متن کاملInvestigating the Effects of Hardware Parameters on Power Consumptions in SPMV Algorithms on Graphics Processing Units (GPUs)
Although Sparse matrix-vector multiplication (SPMVs) algorithms are simple, they include important parts of Linear Algebra algorithms in Mathematics and Physics areas. As these algorithms can be run in parallel, Graphics Processing Units (GPUs) has been considered as one of the best candidates to run these algorithms. In the recent years, power consumption has been considered as one of the metr...
متن کاملA Parallel Algebraic Multigrid Solver on Graphics Processing Units
The paper presents a multi-GPU implementation of the preconditioned conjugate gradient algorithm with an algebraic multigrid preconditioner (PCG-AMG) for an elliptic model problem on a 3D unstructured grid. An efficient parallel sparse matrix-vector multiplication scheme underlying the PCG-AMG algorithm is presented for the manycore GPU architecture. A performance comparison of the parallel sol...
متن کاملImplementing a Sparse Matrix Vector Product for the SELL-C/SELL-C-σ formats on NVIDIA GPUs
Numerical methods in sparse linear algebra typically rely on a fast and efficient matrix vector product, as this usually is the backbone of iterative algorithms for solving eigenvalue problems or linear systems. Against the background of a large diversity in the characteristics of high performance computer architectures, it is a challenge to derive a cross-platform efficient storage format alon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009